How Kubernetes is used in Industries and what all use cases are solved by Kubernetes.

Nishant Bhosale
5 min readMar 14, 2021

What is Kubernetes🔎

Kubernetes is an open-source container-orchestration system for automating computer application deployment, scaling, and management. It was originally designed by Google and is now maintained by the Cloud Native Computing Foundation.

Why Kubernetes🌀

The Docker adoption is still growing exponentially as more and more companies have started using it in production. It is important to use an orchestration/management platform to scale and manage the containers.

Imagine a situation where you have been using Docker for a little while, and have deployed it on a few different servers. Your application starts getting massive traffic, and you need to scale up fast; how will you go from 3 servers to 40 servers that you may require? And how will you decide which container should go where? How would you monitor all these containers and make sure they are restarted if they die? This is where Kubernetes comes in.

CASE STUDY: Spotify

Challenge

Launched in 2008, the audio-streaming platform has grown to over 200 million monthly active users across the world. “Our goal is to empower creators and enable a really immersive listening experience for all of the consumers that we have today — and hopefully the consumers we’ll have in the future,” says Jai Chakrabarti, Director of Engineering, Infrastructure, and Operations. An early adopter of microservices and Docker, Spotify had containerized microservices running across its fleet of VMs with a homegrown container orchestration system called Helios. By late 2017, it became clear that “having a small team working on the features was just not as efficient as adopting something that was supported by a much bigger community,” he says.

Solution

“We saw the amazing community that had grown up around Kubernetes, and we wanted to be part of that,” says Chakrabarti. Kubernetes was more feature-rich than Helios. Plus, “we wanted to benefit from added velocity and reduced cost, and also align with the rest of the industry on best practices and tools.” At the same time, the team wanted to contribute its expertise and influence in the flourishing Kubernetes community. The migration, which would happen in parallel with Helios running, could go smoothly because “Kubernetes fit very nicely as a complimentImpact

The team spent much of 2018 addressing the core technology issues required for a migration, which started late that year and is a big focus for 2019. “A small percentage of our fleet has been migrated to Kubernetes, and some of the things that we’ve heard from our internal teams are that they have less of a need to focus on manual capacity provisioning and more time to focus on delivering features for Spotify,” says Chakrabarti. The biggest service currently running on Kubernetes takes about 10 million requests per second as an aggregate service and benefits greatly from autoscaling, says Site Reliability Engineer James Wen. Plus, he adds, “Before, teams would have to wait for an hour to create a new service and get an operational host to run it in production, but with Kubernetes, they can do that on the order of seconds and minutes.” In addition, with Kubernetes’s bin-packing and multi-tenancy capabilities, CPU utilization has improved on average two- to threefold. and now as a replacement to Helios,” says Chakrabarti.

CASE STUDY:adidas

Challenge

In recent years, the Adidas team was happy with its software choices from a technology perspective — but accessing all of the tools was a problem. For instance, “just to get a developer VM, you had to send a request form, give the purpose, give the title of the project, who’s responsible, give the internal cost center a call so that they can do recharges,” says Daniel Eichten, Senior Director of Platform Engineering. “The best case is you got your machine in half an hour. Worst case is half a week or sometimes even a week.”

Solution

To improve the process, “we started from the developer point of view,” and looked for ways to shorten the time it took to get a project up and running and into the Adidas infrastructure, says Senior Director of Platform Engineering Fernando Cornago. They found the solution with containerization, agile development, continuous delivery, and a cloud-native platform that includes Kubernetes and Prometheus.

Impact

Just six months after the project began, 100% of the Adidas e-commerce site was running on Kubernetes. Load time for the e-commerce site was reduced by half. Releases went from every 4–6 weeks to 3–4 times a day. With 4,000 pods, 200 nodes, and 80,000 builds per month, Adidas is now running 40% of its most critical, impactful systems on its cloud-native platform.

CASE STUDY: Bose

Challenge

A household name in high-quality audio equipment, Bose has offered connected products for more than five years, and as that demand grew, the infrastructure had to change to support it. “We needed to provide a mechanism for developers to rapidly prototype and deploy services all the way to production pretty fast,” says Lead Cloud Engineer Josh West. In 2016, the company decided to start building a platform from scratch. The primary goal: “To be one to two steps ahead of the different product groups so that we are never scrambling to catch up with their scale,” says Cloud Architecture Manager Dylan O’Mahony.

Solution

From the beginning, the team knew it wanted a microservices architecture. After evaluating and prototyping a couple of orchestration solutions, the team decided to adopt Kubernetes for its scaled IoT Platform-as-a-Service running on AWS. The platform, which also incorporated Prometheus monitoring, launched in production in 2017, serving over 3 million connected products from the get-go. Bose has since adopted a number of other CNCF technologies, including Fluentd, CoreDNS, Jaeger, and OpenTracing.

Impact

With about 100 engineers onboarded, the platform is now enabling 30,000 non-production deployments across dozens of microservices per year. In 2018, there were 1250+ production deployments. Just one production cluster holds 1,800 namespaces and 340 worker nodes. “We had a brand new service taken from concept through coding and deployment all the way to production, including hardening, security testing and so forth, in less than two and a half weeks,” says O’Mahony.

--

--